Using Genetics to Develop New Cancer Treatments

Newcastle University

Genome-wide comparison of paired diagnostic and relapsed neuroblastomas

Anna Underhill*, Angharad Humphreys BSc, Lindi Chen PhD, Nick Bown PhD, Alem Gabriel PhD, Deborah Tweddle MBChB PhD

Introduction

Neuroblastoma is the most common extracranial solid tumour in children. Neuroblastoma develops from cells called neuroblasts which form the sympathetic nervous system. ${ }^{1}$
For low risk patients the survival rate after 5 years is 95%, however for high risk cases the survival rate after 5 years is only 50%. High risk cases are characterised by amplification of the MYCN gene, patient aged over 1 year old and metastasis of the tumour. Relapse of the tumour occurs in 50% of high risk cases.
It has previously been shown that there are more genetic mutations at relapse of neuroblastoma than at diagnosis. This is due to evolution of the tumour. Cells that are resistant to the initial chemotherapy at diagnosis survive then cause the patient to relapse.

Copy number alterations (CNAs) can be detected using a SNP array. A SNP is an alternative form of a single base of DNA. A SNP array uses target probes to bind to and detect these SNPs

Aims

To compare genetics of diagnostic and relapsed neuroblastoma cell lines and tumour cells by SNP array
lines and tumour cells by SNP array experiments

Methods

DNA extraction from tissue: DNA was extracted using the DNA prep kit after lysing the tissue. The DNA was then bound to a membrane, eluted and collected.
DNA quantification: DNA was quantified using a Qubit flurometer after it has been extracted. A dye was used which only becomes fluorescent when it is bound to DNA. The dye's intensity was then detected and measure SNP arrays: SNP arrays were carried out on paired cell lines. Three taken at diagnosis (NBLW, PER106, BE1N), three at relapse (NBLW-R, PER107, BE2C) and one at further relapse (PER108). The NBLW and NBLW-R cell lines were taken from the same patient, the PER cell lines were also taken from the same patient. We also carried out SNP arrays on 3 neuroblastoma tumour samples 20/038 (post-chemo), $4 / 148$ (relapse) and $4 / 50$ (post-chemo). In a SNP array single strands of DNA bind to unique probe sequences Each probe binds to a target sequence. The signal from each probe can then be detected. ${ }^{4}$
Spiking: To find out the level at which CNAs could no longer be detected we set up 7 SNP arrays. Each sample had a different percentage of tumour DNA in. The lowest percentage of tumour content at which CNAs can still be detected shows the sensitivity of the SNP array.

Results

Comparison of Cell Lines and Tumour Samples
We identified several genetic differences between the NBLW and NBLW-R cell lines at diagnosis and relapse.
We detected more CNAs at
relapse than at diagnosis. The locations of these changes can be seen in the table below.

Spiking Experiment

The data from the SNP array can be seen in the figure in the column opposite. This shows that CNAs can be detected down to 10% tumour content. In a SNP array analysis, normal chromosome copy numbers are shown along the 0 log2 ratio line. Any SNP probes that are below he line represent a loss of copy number and any that are above the ne represent a gain.

Discussion

One of the key genetic abnormalities in neuroblastoma is amplification of the MYCN gene. We found that MYCN amplification is maintained at diagnosis and at relapse. Across all the samples there were more gains of copy number than losses of copy number. Cases of uniparental disomy were also seen in the cell lines. This occurs when both chromosomes are from the same parent instead of having one from each parent. Cells with genetic changes that make them resistant to the initial chemotherapy survive and form the relapsed tumour. Detection of genomic changes in relapsed tumours may identify new treatment targets which could be developed.

- Some tumours that need to be analysed by SNP array have a low tumour content, some as low as 10%. This is why it was important to measure the sensitivity of the CytoSNP-850K BeadChip SNP array. From these results we can be confident that CNAs can be detected down to 10% tumour content.

Conclusions

Our data shows that evolution of the tumour can be tracked between diagnostic and relapsed cell lines and neuroblastoma tumours It is possible to confidently detect CNCs down to 10% tumour content using the CytoSNP-850K BeadChip Illumina SNP array

Acknowledgements

I would like to thank Prof Deborah Tweddle for giving me this opportunity, and Dr Al Gabriel for all his help and support during this project. Also thanks to the originators of the cell lines used in this project, Sue Cohn (NBLW and NBLW-R) and Ursula Kees I would also like to thank Newcastle University for awarding me the Research Scholarship

References

action medical research medical rese
for children
ncca uk

気

